题目内容
如图,已知圆C1的方程为(x-2)2+(y-1)2=20 |
3 |
x2 |
a2 |
y2 |
b2 |
| ||
2 |
分析:由e=
得,b2=c2,设椭圆方程为:
+
=1,令A(x1,y1),B(x2,y2),由已知得圆心C1(2,1)为AB中点,A,B均在椭圆C2上,
+
=1,
+
=1,两式相减得:
+
=0,kAB=
=-1,再由根的判别式结合题设条件可求出直线AB的方程和椭圆C2的方程.
| ||
2 |
x2 |
2b2 |
y2 |
b2 |
x12 |
2b2 |
y12 |
b2 |
x22 |
2b2 |
y22 |
b2 |
4(x1-x2) |
2b2 |
2(y1-y2) |
b2 |
y1-y2 |
x1-x2 |
解答:由e=
得
=
,
∴a2=2c2,b2=c2,
设椭圆方程为:
+
=1(2分)
令A(x1,y1),B(x2,y2),
由已知得圆心C1(2,1)为AB中点,
∴x1+x2=4,y1+y2=2,
又A,B均在椭圆C2上,
∴
+
=1,
+
=1,
两式相减得:
+
=0
即
+
=0
∴kAB=
=-1,
即直线AB的方程为y-1=-(x-2)即x+y-3=0(6分)
将y=-x+3代入
+
=1得3x2-12x+18-2b2=0(9分)
∴x1+x2=4,x1x2=
由直线AB与椭圆C2相交,
∴△=122-12(18-2b2)=24b2-72>0即b2>3,
又|AB|=
|x1-x2|=
=2•
(11分)
即16-4•
=
解得b2=8,故所求的椭圆方程为
+
=1(13分)
| ||
2 |
c |
a |
| ||
2 |
∴a2=2c2,b2=c2,
设椭圆方程为:
x2 |
2b2 |
y2 |
b2 |
令A(x1,y1),B(x2,y2),
由已知得圆心C1(2,1)为AB中点,
∴x1+x2=4,y1+y2=2,
又A,B均在椭圆C2上,
∴
x12 |
2b2 |
y12 |
b2 |
x22 |
2b2 |
y22 |
b2 |
两式相减得:
(x1+x2)(x1-x2) |
2b2 |
(y1+y2)(y1-y2) |
b2 |
即
4(x1-x2) |
2b2 |
2(y1-y2) |
b2 |
∴kAB=
y1-y2 |
x1-x2 |
即直线AB的方程为y-1=-(x-2)即x+y-3=0(6分)
将y=-x+3代入
x2 |
2b2 |
y2 |
b2 |
∴x1+x2=4,x1x2=
18-2b2 |
3 |
∴△=122-12(18-2b2)=24b2-72>0即b2>3,
又|AB|=
2 |
2 |
(x1+x2)2-4x1x2 |
|
即16-4•
18-2b2 |
3 |
40 |
3 |
x2 |
16 |
y2 |
8 |
点评:本题考查直线和圆锥曲线的综合问题,解题时要认真审题,合理解答,注意公式的合理运用.
练习册系列答案
相关题目