题目内容
如图,已知圆C1的方程为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_ST/images3.png)
【答案】分析:由
得,b2=c2,设椭圆方程为:
,令A(x1,y1),B(x2,y2),由已知得圆心C1(2,1)为AB中点,A,B均在椭圆C2上,
,两式相减得:
,
,再由根的判别式结合题设条件可求出直线AB的方程和椭圆C2的方程.
解答:由
得
,
∴a2=2c2,b2=c2,
设椭圆方程为:
(2分)
令A(x1,y1),B(x2,y2),
由已知得圆心C1(2,1)为AB中点,
∴x1+x2=4,y1+y2=2,
又A,B均在椭圆C2上,
∴
,
两式相减得:![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/9.png)
即![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/10.png)
∴
,
即直线AB的方程为y-1=-(x-2)即x+y-3=0(6分)
将y=-x+3代入
得3x2-12x+18-2b2=0(9分)
∴
由直线AB与椭圆C2相交,
∴△=122-12(18-2b2)=24b2-72>0即b2>3,
又
(11分)
即
解得b2=8,故所求的椭圆方程为
(13分)
点评:本题考查直线和圆锥曲线的综合问题,解题时要认真审题,合理解答,注意公式的合理运用.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/4.png)
解答:由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/6.png)
∴a2=2c2,b2=c2,
设椭圆方程为:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/7.png)
令A(x1,y1),B(x2,y2),
由已知得圆心C1(2,1)为AB中点,
∴x1+x2=4,y1+y2=2,
又A,B均在椭圆C2上,
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/8.png)
两式相减得:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/9.png)
即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/10.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/11.png)
即直线AB的方程为y-1=-(x-2)即x+y-3=0(6分)
将y=-x+3代入
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/12.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/13.png)
∴△=122-12(18-2b2)=24b2-72>0即b2>3,
又
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/14.png)
即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103102455613937246/SYS201311031024556139372020_DA/16.png)
点评:本题考查直线和圆锥曲线的综合问题,解题时要认真审题,合理解答,注意公式的合理运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目