题目内容
19、如图,在四棱台ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60°.
(Ⅰ)证明:AA1⊥BD;
(Ⅱ)证明:CC1∥平面A1BD.
(Ⅰ)证明:AA1⊥BD;
(Ⅱ)证明:CC1∥平面A1BD.
分析:(Ⅰ) 由D1D⊥平面ABCD,可证 D1D⊥BD.△ABD 中,由余弦定理得 BD2,勾股定理可得 AD⊥BD,由线面垂直的判定定理可证 BD⊥面ADD1A1,再由线面垂直的性质定理可证 BD⊥AA1.
(Ⅱ)连接AC和A1C1,设AC∩BD=E,先证明四边形ECC1A1为平行四边形,可得CC1∥A1E,再由线面平行的判定定理可证CC1∥平面A1BD.
(Ⅱ)连接AC和A1C1,设AC∩BD=E,先证明四边形ECC1A1为平行四边形,可得CC1∥A1E,再由线面平行的判定定理可证CC1∥平面A1BD.
解答:证明:(Ⅰ)∵D1D⊥平面ABCD,∴D1D⊥BD. 又AB=2AD,AD=A1B1,∠BAD=60°,△ABD 中,
由余弦定理得 BD2=AD2+AB2-2AB•ADcos60°=3AD2,∴AD2+BD2=AB2,
∴AD⊥BD,又 AD∩DD1=D,∴BD⊥面ADD1A1.
由 AA1?面ADD1A1,∴BD⊥AA1.
(Ⅱ)证明:连接AC 和A1C1,设 AC∩BD=E,由于底面ABCD是平行四边形,故E为平行四边形ABCD的
中心,由棱台的定义及AB=2AD=2A1B1,可得 EC∥A1C1,且 EC=A1C1,
故ECC1 A1 为平行四边形,∴CC1∥A1 E,而A1 E?平面A1BD,∴CC1∥平面A1BD.
由余弦定理得 BD2=AD2+AB2-2AB•ADcos60°=3AD2,∴AD2+BD2=AB2,
∴AD⊥BD,又 AD∩DD1=D,∴BD⊥面ADD1A1.
由 AA1?面ADD1A1,∴BD⊥AA1.
(Ⅱ)证明:连接AC 和A1C1,设 AC∩BD=E,由于底面ABCD是平行四边形,故E为平行四边形ABCD的
中心,由棱台的定义及AB=2AD=2A1B1,可得 EC∥A1C1,且 EC=A1C1,
故ECC1 A1 为平行四边形,∴CC1∥A1 E,而A1 E?平面A1BD,∴CC1∥平面A1BD.
点评:本题考查余弦定理、勾股定理、线面平行的判定定理、线面平行的性质定理的应用,体现了数形结合的数学思想.
练习册系列答案
相关题目