题目内容
18.解方程组:(1)$\left\{\begin{array}{l}{2x-3y=1}\\{2{x}^{2}-3xy+{y}^{2}-4x+3y-3=0}\end{array}\right.$
(2)$\left\{\begin{array}{l}{3{x}^{2}-{y}^{2}=8}\\{{x}^{2}+xy+{y}^{2}=4}\end{array}\right.$.
分析 (1)把x=$\frac{1+3y}{2}$代入2x2-3xy+y2-4x+3y-3=0,化为2y2-3y-9=0,解得y,x即可.
(2)$\left\{\begin{array}{l}{3{x}^{2}-{y}^{2}=8}&{①}\\{{x}^{2}+xy+{y}^{2}=4}&{②}\end{array}\right.$,①+②为:4x2+xy=12,可得y=$\frac{12-4{x}^{2}}{x}$(x≠0),代入①解出x,即可得出.
解答 解:(1)把x=$\frac{1+3y}{2}$代入2x2-3xy+y2-4x+3y-3=0,化为2y2-3y-9=0,解得y=-$\frac{3}{2}$或3.
∴$\left\{\begin{array}{l}{x=-\frac{7}{4}}\\{y=-\frac{3}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{x=5}\\{y=3}\end{array}\right.$,即为原方程组的解.
(2)$\left\{\begin{array}{l}{3{x}^{2}-{y}^{2}=8}&{①}\\{{x}^{2}+xy+{y}^{2}=4}&{②}\end{array}\right.$,①+②为:4x2+xy=12,可得y=$\frac{12-4{x}^{2}}{x}$(x≠0),
代入①可得:13x4-88x2+144=0,
解得x2=4或$\frac{36}{13}$,
∴$\left\{\begin{array}{l}{x=2}\\{y=-2}\end{array}\right.$,$\left\{\begin{array}{l}{x=-2}\\{y=2}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{6\sqrt{13}}{13}}\\{y=\frac{2\sqrt{13}}{13}}\end{array}\right.$,$\left\{\begin{array}{l}{x=-\frac{6\sqrt{13}}{13}}\\{y=-\frac{2\sqrt{13}}{13}}\end{array}\right.$.
点评 本题考查了利用“消元法”解方程组,考查了计算能力,属于基础题.