题目内容
已知正项数列满足4Sn=(an+1)2.
(1)求数列{an}的通项公式;
(2)设bn=
,求数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)设bn=
1 |
anan+1 |
(Ⅰ)∵4Sn=(an+1)2.
∴当n≥2时,4Sn-1=(an-1+1)2.
两式相减可得,4(sn-sn-1)=(an+1)2-(an-1+1)2
即4an=(an+1)2-(an-1+1)2
整理得an-an-1=2 …(4分)
又a1=1
∴an=1+2(n-1)=2n-1 …(6分)
(Ⅱ) 由(1)知 bn=
=
(
-
)…(8分)
所以Tn=
(1-
+
-
+…+
-
)=
(1-
)=
…(12分)
∴当n≥2时,4Sn-1=(an-1+1)2.
两式相减可得,4(sn-sn-1)=(an+1)2-(an-1+1)2
即4an=(an+1)2-(an-1+1)2
整理得an-an-1=2 …(4分)
又a1=1
∴an=1+2(n-1)=2n-1 …(6分)
(Ⅱ) 由(1)知 bn=
1 |
(2n-1)(2n+1) |
1 |
2 |
1 |
2n-1 |
1 |
2n+1 |
所以Tn=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n-1 |
1 |
2n+1 |
1 |
2 |
1 |
2n+1 |
n |
2n+1 |
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目