题目内容
【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料,乙材料.用5个工时;生产一件产品B需要甲材料,乙材料 ,用3个工时。生产一件产品A的利润为2100元,生产一件产品B的利润为900元,该企业现有甲材料150,乙材料,则在不超过600个工时的条件下,生产产品A,产品B的利润之和的最大值为______________元.
【答案】216000元
【解析】设生产A产品x件,B产品y件,利润总和为z,
则,目标函数z=2100x+900y,
做出可行域如图所示:
将z=2100x+900y变形,得,
由图象可知,当直线经过点M时,z取得最大值.
解方程组 得M的坐标为(60,100).
所以当x=60,y=100时,zmax=2100×60+900×100=216000.
故生产产品A、产品B的利润之和的最大值为216000元.
练习册系列答案
相关题目
【题目】某餐厅通过查阅了最近5次食品交易会参会人数 (万人)与餐厅所用原材料数量 (袋),得到如下统计表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
参会人数 (万人) | 13 | 9 | 8 | 10 | 12 |
原材料 (袋) | 32 | 23 | 18 | 24 | 28 |
(1)根据所给5组数据,求出关于的线性回归方程.
(2)已知购买原材料的费用 (元)与数量 (袋)的关系为,
投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).
参考公式: , .
参考数据: , , .