题目内容
9.已知△ABC的三个顶点A,B,C及平面内一点P满足$\overrightarrow{PA}$+$\overrightarrow{PB}$=$\overrightarrow{PC}$,则下列说法中正确的是( )A. | P在△ABC的内部 | B. | P在△ABC的边AB上 | ||
C. | P在AB边所在的直线上 | D. | P在△ABC的外部 |
分析 利用△ABC的三个顶点A,B,C及平面内一点P满足$\overrightarrow{PA}$+$\overrightarrow{PB}$=$\overrightarrow{PC}$,可得P,B,A,C组成平行四边形,即可得出结论.
解答 解:因为△ABC的三个顶点A,B,C及平面内一点P满足$\overrightarrow{PA}$+$\overrightarrow{PB}$=$\overrightarrow{PC}$,
所以P,B,A,C组成平行四边形,
所以P在△ABC的外部,
故选:D.
点评 本题考查平行四边形的加法法则,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关题目
19.空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可如肺颗粒物的含量,这个值越高,代表空气污染越严重:
甲市2015年2月份中有15对空气质量指数PM2.5进行监测,获得PM2.5日均浓度数据茎叶图如图所示.
(Ⅰ)在15天内任取2天,求甲市空气质量类别均为良的概率;
(Ⅱ)在15天内任取2天,记甲市空气质量级别不超过三级的天数为X,求随机变量X的分布列及数学期望.
PM2.5日均浓度 | 0~35 | 35~75 | 75~115 | 115~150 | 150~250 | >250 |
空气质量级别 | 一级 | 二级 | 三级 | 四级 | 五级 | 六级 |
空气质量类别 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
(Ⅰ)在15天内任取2天,求甲市空气质量类别均为良的概率;
(Ⅱ)在15天内任取2天,记甲市空气质量级别不超过三级的天数为X,求随机变量X的分布列及数学期望.