题目内容
已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足|
+
|=
·(
+
)+2.
(1)求曲线C的方程;
(2)点Q(x0,y0)(-2<x0<2)是曲线C上的动点,曲线C在点Q处的切线为
,点P的坐标是(0,-1),
与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700697478.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700713493.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700728482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700744394.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700759384.png)
(1)求曲线C的方程;
(2)点Q(x0,y0)(-2<x0<2)是曲线C上的动点,曲线C在点Q处的切线为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700775280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700775280.png)
(1)曲线C的方程是
;(2)△QAB与△PDE的面积之比
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700806520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700837847.png)
试题分析:(1)将向量式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240317008531178.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700806520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700884638.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700775280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700931782.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700931758.png)
再联立直线PA,PB与曲线C的方程,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240317009621378.png)
利用韦达定理计算
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240317009781044.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240317009931068.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031701009627.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031701025396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031701040569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240317010561224.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700837847.png)
试题解析:解:(1)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240317010871193.png)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240317011182652.png)
由已知得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031701134967.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700806520.png)
(2)直线PA,PB的方程分别是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031701149543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700931782.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700931758.png)
分别联立方程,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240317009621378.png)
解得D,E的横坐标分别是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031701212849.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240317009781044.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240317012591853.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240317012591358.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824031700837847.png)
即△QAB与△PDE的面积之比为2.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目