题目内容
已知正项数列{an}满足:①对任意n∈N*,都有an•an+2=an+12; ②lga1+lga2+…+lga9=27,则lga11+lga19-lga152的值为( )
A.107 | B.10-1 | C.0 | D.-5 |
∵an•an+2=an+12,
∴正项数列{an}是等比数列,
∴lga11+lga19-lga152
=lg(
)
=lg1
=0.
故选C.
∴正项数列{an}是等比数列,
∴lga11+lga19-lga152
=lg(
a11•a19 |
a15 2 |
=lg1
=0.
故选C.
练习册系列答案
相关题目