题目内容
已知动圆P过点N(2,0)并且与圆M:(x+2)2+y2=4相外切,动圆圆心P的轨迹为W,过点N的直线l与轨迹W交于A、B两点.(1)求轨迹W的方程;
(2)若2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_ST/1.png)
(3)对于l的任意一确定的位置,在直线x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_ST/4.png)
【答案】分析:(1)根据题意可推断出|PM|-|PN|=2<|MN|=4进而利用双曲线的定义可知点P的轨迹W是以M、N为焦点的双曲线的右支,设出其标准方程,依题意求得a和c,则b可求,进而求得双曲线的方程.
(2)设出l的方程与双曲线方程联立,进而利用2
=
求得x2和x1的关系式,代入方程入①②求得k,则直线的方程可得.
(3)问题可转化为判断以AB为直径的圆是否与直线x=
有公共点,先看直线l的斜率不存在,则以AB为直径的圆为(x-2)2+y2=9,可知其与直线x=
相交;再看斜率存在时设出直线的方程,利用焦点坐标和离心率求得|AB|的表达式,设以AB为直径的圆的圆心为S,点S到直径x=
的距离为d,则d可求,d-
判断出结果小于0,推断出d<
,进而可知直线x=
与圆S相交,最后综合可得答案.
解答:解:(1)依题意可知|PM|=|PN|+2∴|PM|-|PN|=2<|MN|=4,
∴点P的轨迹W是以M、N为焦点的双曲线的右支,设其方程为
-
=1(a>0,b>0)则a=1,c=2,
∴b2=c2-a2=3,∴轨迹W的方程为
=1,(x≥1).
(2)当l的斜率不存在时,显然不满足2
=
,故l的斜率存在,设l的方程为y=k(x-2),
由
得(3-k2)x2+4k2x-4k2-3=0,又设A(x1,y1),B(x2,y2),则![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/14.png)
由①②③解得k2>3,∵2
=
∴2(2-x1,-y1)=(x2-2,y2)
∴x2=6-2x1代入①②得
=6-x1,
=x1(6-2x1)
消去x1得k2=35,即k=±
,故所求直线l的方程为:y=±
(x-2);
(3)问题等价于判断以AB为直径的圆是否与直线x=
有公共点
若直线l的斜率不存在,则以AB为直径的圆为(x-2)2+y2=9,可知其与直线x=
相交;若直线l的斜率存在,则设直线l的方程为y=k(x-2),A(x1,y1),B(x2,y2)
由(2)知k2>3且x1+x2=
,又N(2,0)为双曲线的右焦点,双曲线的离心率e=2,
则|AB|=e(x1+x2)-2a=2×
-2=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/25.png)
设以AB为直径的圆的圆心为S,点S到直径x=
的距离为d,则d=
-
=
-
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/31.png)
∴d-
=
-
=-![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/35.png)
∵k2>3∴d-
<0即d<
,即直线x=
与圆S相交.
综上所述,以线段AB为直径的圆与直线x=
相交;
故对于l的任意一确定的位置,与直线x=
上存在一点Q(实际上存在两点)使得
•
=0
点评:本题主要考查了直线与圆锥曲线的综合问题.考查了学生分析问题和解决问题的能力.
(2)设出l的方程与双曲线方程联立,进而利用2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/1.png)
(3)问题可转化为判断以AB为直径的圆是否与直线x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/7.png)
解答:解:(1)依题意可知|PM|=|PN|+2∴|PM|-|PN|=2<|MN|=4,
∴点P的轨迹W是以M、N为焦点的双曲线的右支,设其方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/9.png)
∴b2=c2-a2=3,∴轨迹W的方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/10.png)
(2)当l的斜率不存在时,显然不满足2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/12.png)
由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/14.png)
由①②③解得k2>3,∵2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/16.png)
∴x2=6-2x1代入①②得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/18.png)
消去x1得k2=35,即k=±
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/19.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/20.png)
(3)问题等价于判断以AB为直径的圆是否与直线x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/21.png)
若直线l的斜率不存在,则以AB为直径的圆为(x-2)2+y2=9,可知其与直线x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/22.png)
由(2)知k2>3且x1+x2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/23.png)
则|AB|=e(x1+x2)-2a=2×
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/25.png)
设以AB为直径的圆的圆心为S,点S到直径x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/28.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/29.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/30.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/31.png)
∴d-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/32.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/33.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/34.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/35.png)
∵k2>3∴d-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/36.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/37.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/38.png)
综上所述,以线段AB为直径的圆与直线x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/39.png)
故对于l的任意一确定的位置,与直线x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/40.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/41.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182422672705922/SYS201310241824226727059020_DA/42.png)
点评:本题主要考查了直线与圆锥曲线的综合问题.考查了学生分析问题和解决问题的能力.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目