题目内容

已知函数f(x)=lnx-.
(1)当时,判断f(x)在定义域上的单调性;
(2)若f(x)在[1,e]上的最小值为,求的值.

(1)f(x)在(0,+∞)上是单调递增函数
(2)a=-.

解析试题分析:解:(1)由题得f(x)的定义域为(0,+∞),
且f′(x)=.∵a>0,∴f′(x)>0,故f(x)在(0,+∞)上是单调递增函数.
(2)由(1)可知:f′(x)=
①若a≥-1,则x+a≥0,即f′(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上为增函数,∴f(x)min=f(1)=-a=,∴a=- (舍去).  
②若a≤-e,则x+a≤0,即f′(x)≤0在[1,e]上恒成立,此时f(x)在[1,e]上为减函数,∴f(x)min=f(e)=1-,∴a=- (舍去).
③若-e<a<-1,令f′(x)=0,得x=-a.
当1<x<-a时,f′(x)<0,∴f(x)在(1,-a)上为减函数;
当-a<x<e时,f′(x)>0,∴f(x)在(-a,e)上为增函数,
∴f(x)min=f(-a)=ln(-a)+1=⇒a=-.
综上可知:a=-.
考点:导数的运用
点评:解决的关键是根据导数的正负判定函数单调性,以及函数的极值,进而确定出函数的最值,属于基础题。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网