题目内容

(本题满分12分)已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.

(I)求椭圆的方程;

(II)设P(4,0),A,B是椭圆上关于轴对称的任意两个不同的点,连接交椭圆于另一点,证明直线轴相交于定点

(Ⅲ)在(II)的条件下,过点的直线与椭圆交于两点,求的取值范围.

 

【答案】

(1)                        …………………………………2分

(2)由题意可知存在且不为0.

    消

,…………………………………4分

所以

,由韦达定理化简得

所以直线轴相交于定点.  …………………………………6分

 

 

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网