题目内容

坐标系与参数方程

已知圆锥曲线为参数)和定点F1,F2是圆锥曲线的左右焦点。

(1)求经过点F2且垂直于直线AF1的直线l的参数方程;

(2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AF2的极坐标方程。

 

【答案】

(1) (2)

【解析】

试题分析:(1)利用三角函数中的平方关系消去参数θ,将圆锥曲线化为普通方程,从而求出其焦点坐标,再利用直线的斜率求得直线L的倾斜角,最后利用直线的参数方程形式,即可得到直线L的参数方程.

(2)设P(ρ,θ)是直线AF2上任一点,利用正弦定理列出关于ρ、θ的关系式,化简即得直线AF2的极坐标方程.

解:(1)圆锥曲线

化为普通方程) 

所以则直线的斜率

于是经过点且垂直于直线的直线l的斜率

直线l的倾斜角为

所以直线l参数方程

(2)直线AF2的斜率k=- ,倾斜角是120°,设P(ρ,θ)是直线AF2上任一点即ρsin(120°-θ)=sin60°,化简得ρcosθ+ρsinθ=,故可知

考点:曲线的极坐标方程、直线的参数方程

点评:本小题主要考查简单曲线的极坐标方程、直线的参数方程、椭圆的参数方程等基础知识,考查运算求解能力,考查数形结合思想.属于基础题

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网