题目内容

设tanθ和tan(
π
4
-θ)是方程x2+px+q=0的两个根,则p、q之间的关系是(  )
A、p+q+1=0
B、p-q+1=0
C、p+q-1=0
D、p-q-1=0
分析:因为tanθ和tan(
π
4
-θ)是方程x2+px+q=0的两个根,则根据一元二次方程的根的分布与系数关系得到相加等于-p,相乘等于q,再根据两角差的正切公式找出之间的关系即可.
解答:解:因为tanθ和tan(
π
4
-θ)是方程x2+px+q=0的两个根,
得tanθ+tan(
π
4
-θ)=-p,tanθtan(
π
4
)=q
又因为1=tan[θ+(
π
4
-θ)]=
tanθ+tan(
π
4
-θ)
1-tanθtan(
π
4
-θ)
=
-p
1-q

得到p-q+1=0
故选B
点评:考查学生运用两角和与差的正切函数的能力,以及利用一元二次方程的根的分布与系数关系的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网