ÌâÄ¿ÄÚÈÝ
ijÊл·¾³Ñо¿Ëù¶ÔÊÐÖÐÐÄÿÌì»·¾³ÎÛȾÇé¿ö½øÐе÷²éÑо¿ºó£¬·¢ÏÖÒ»ÌìÖл·¾³×ÛºÏÎÛȾָÊýf£¨x£©Óëʱ¼äx£¨Ð¡Ê±£©µÄ¹ØϵΪf(x)=|
sin(
x)+
-a|+2a£¬x¡Ê[0£¬24]£¬ÆäÖÐaΪÓëÆøÏóÓйصIJÎÊý£¬ÇÒa¡Ê[0£¬
]£®ÈôÓÃÿÌìf£¨x£©µÄ×î´óÖµ×÷Ϊµ±ÌìµÄ×ÛºÏÎÛȾָÊý£¬²¢¼Ç×÷M£¨a£©£®
£¨¢ñ£©Áît=
sin(
x)£¬x¡Ê[0£¬24]£¬ÇótµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©Çóº¯ÊýM£¨a£©£»
£¨¢ó£©Îª¼ÓÇ¿¶Ô»·¾³ÎÛȾµÄÕûÖΣ¬ÊÐÕþ¸®¹æ¶¨Ã¿ÌìµÄ×ۺϻ·¾³ÎÛȾָÊý²»µÃ³¬¹ý2£¬ÊÔÎÊÄ¿Ç°ÊÐÖÐÐĵÄ×ÛºÏÎÛȾָÊýÊǶàÉÙ£¿ÊÇ·ñ³¬±ê£¿
1 |
2 |
¦Ð |
32 |
1 |
3 |
3 |
4 |
£¨¢ñ£©Áît=
1 |
2 |
¦Ð |
32 |
£¨¢ò£©Çóº¯ÊýM£¨a£©£»
£¨¢ó£©Îª¼ÓÇ¿¶Ô»·¾³ÎÛȾµÄÕûÖΣ¬ÊÐÕþ¸®¹æ¶¨Ã¿ÌìµÄ×ۺϻ·¾³ÎÛȾָÊý²»µÃ³¬¹ý2£¬ÊÔÎÊÄ¿Ç°ÊÐÖÐÐĵÄ×ÛºÏÎÛȾָÊýÊǶàÉÙ£¿ÊÇ·ñ³¬±ê£¿
·ÖÎö£º£¨I£©¸ù¾ÝxµÄÈ¡Öµ·¶Î§Çó³ö
µÄÈ¡Öµ·¶Î§£¬×îºó¸ù¾ÝÕýÏÒº¯ÊýµÄÐÔÖÊ´Ó¶ø¿ÉÇó³ötµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©ÓÉ£¨I£©»¯¼òf£¨x£©µÄ½âÎöʽ£¬ÌÖÂÛaµÄ·¶Î§£¬È¥µô¾ø¶ÔÖµ£¬´Ó¶øÇó³öº¯ÊýM£¨a£©£»
£¨¢ó£©¸ù¾Ý·Ö¶Îº¯Êý£¬·Ö±ðÑо¿Ã¿¶ÎÉϵÄ×î´óÖµ£¬È»ºóÓë2½øÐбȽϣ¬´Ó¶øÈ·¶¨ÊÇ·ñ³¬±ê£®
¦Ðx |
32 |
£¨¢ò£©ÓÉ£¨I£©»¯¼òf£¨x£©µÄ½âÎöʽ£¬ÌÖÂÛaµÄ·¶Î§£¬È¥µô¾ø¶ÔÖµ£¬´Ó¶øÇó³öº¯ÊýM£¨a£©£»
£¨¢ó£©¸ù¾Ý·Ö¶Îº¯Êý£¬·Ö±ðÑо¿Ã¿¶ÎÉϵÄ×î´óÖµ£¬È»ºóÓë2½øÐбȽϣ¬´Ó¶øÈ·¶¨ÊÇ·ñ³¬±ê£®
½â´ð£º½â£º£¨¢ñ£©x¡Ê[0£¬24]£¬
¡Ê[0£¬
]£¬t¡Ê[0£¬
]£® ¡¡¡£¨4·Ö£©
£¨¢ò£©Áîg(t)=|t+
-a|+2a=|t-(a-
)|+2a£¬t¡Ê[0£¬
]£®
µ±a-
£¼
£¬0¡Üa£¼
ʱ£¬(g(t))max=g(
)=|
-a|+2a=a+
£® ¡£¨6·Ö£©
µ±a-
¡Ý
£¬
¡Üa£¼
ʱ£¬(g(t))max=g(0)=|
-a|+2a=3a-
£® ¡£¨8·Ö£©
M£¨a£©=
¡£¨10·Ö£©
£¨¢ó£©µ±a¡Ê[0£¬
)ʱ£¬M£¨a£©ÊÇÔöº¯Êý£¬M(a)£¼M(
)=
£¼2¡£¨11·Ö£©
µ±a¡Ê[
£¬
]ʱ£¬M£¨a£©ÊÇÔöº¯Êý£¬M(a)¡ÜM(
)=
£¼2£®¡£¨13·Ö£©
ËùÒÔ£¬ÊÐÖÐÐÄÎÛȾָÊýûÓг¬±ê ¡£¨15·Ö£©
¦Ðx |
32 |
3¦Ð |
4 |
1 |
2 |
£¨¢ò£©Áîg(t)=|t+
1 |
3 |
1 |
3 |
1 |
2 |
µ±a-
1 |
3 |
1 |
4 |
7 |
12 |
1 |
2 |
5 |
6 |
5 |
6 |
µ±a-
1 |
3 |
1 |
4 |
7 |
12 |
3 |
4 |
1 |
3 |
1 |
3 |
M£¨a£©=
|
£¨¢ó£©µ±a¡Ê[0£¬
7 |
12 |
7 |
12 |
17 |
12 |
µ±a¡Ê[
7 |
12 |
3 |
4 |
3 |
4 |
23 |
12 |
ËùÒÔ£¬ÊÐÖÐÐÄÎÛȾָÊýûÓг¬±ê ¡£¨15·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˸ù¾Ýʵ¼ÊÎÊÌâÑ¡Ôñº¯ÊýÀàÐÍ£¬ÒÔ¼°ÀûÓõ¥µ÷ÐÔÇó×îÖµ£¬Í¬Ê±¿¼²éÁ˼ÆËãÄÜÁ¦ºÍ·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿