题目内容

已知抛物线方程y2=mx(m∈R,且m≠0).
(Ⅰ)若抛物线焦点坐标为(1,0),求抛物线的方程;
(Ⅱ)若动圆M过A(2,0),且圆心M在该抛物线上运动,E、F是圆M和y轴的交点,当m满足什么条件时,|EF|是定值.
(Ⅰ)依题意:
p
2
=1
.(2分)
∴p=2∴所求方程为y2=4x.(4分)
(Ⅱ)设动圆圆心为M(a,b),(其中a≥0),E、F的坐标分别为(0,y1),(0,y2
因为圆M过(2,0),
故设圆的方程(x-a)2+(y-b)2=(a-2)2+b2(6分)
∵E、F是圆M和y轴的交点
∴令x=0得:y2-2by+4a-4=0(8分)
则y1+y2=2b,y1•y2=4a-4
|EF|=
(y1-y2)2
=
(y1+y2)2-4y1y2
=
4b2-16a+16
(10分)
又∵圆心M(a,b)在抛物线y2=mx上
∴b2=ma(11分)
|EF|=
4ma-16a+16
=
4a(m-4)+16
.(12分)
∴当m=4时,|EF|=4(定值).(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网