ÌâÄ¿ÄÚÈÝ
15£®ÎÒ¹ú¶ÔPM2.5²ÉÓÃÈçϱê×¼£ºPM2.5ÈÕ¾ùÖµm£¨Î¢¿Ë/Á¢·½Ã×£© | ¿ÕÆøÖÊÁ¿µÈ¼¶ |
m£¼35 | Ò»¼¶ |
35¡Üm¡Ü75 | ¶þ¼¶ |
m£¾75 | ³¬±ê |
£¨1£©´ÓÕâ10ÌìµÄÊý¾ÝÖÐÈÎÈ¡3ÌìµÄÊý¾Ý£¬¼Ç¦Î±íʾÕâ3ÌìÖпÕÆøÖÊÁ¿´ïµ½Ò»¼¶µÄÌìÊý£¬Çó¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£»
£¨2£©ÉèÕâÒ»ÄêµÄ360ÌìÖпÕÆøÖÊÁ¿´ïµ½Ò»¼¶µÄÌìÊýΪ¦Ç£¬ÒÔÕâ10ÌìµÄPM2.5ÈÕ¾ùÖµÀ´¹À¼Æ¦ÇÈ¡ºÎֵʱµÄ¸ÅÂÊ×î´ó£®
·ÖÎö £¨1£©È·¶¨Ëæ»ú±äÁ¿k=0£¬1£¬2£¬3£¬ÀûÓÃP£¨¦Î=k£©=$\frac{{{C}_{4}^{k}C}_{6}^{3-k}}{{C}_{10}^{3}}$Çó½â¸ÅÂʵóö·Ö²¼ÁУ®
£¨2£©Ò»¼¶µÄ¸ÅÂÊΪ$\frac{2}{5}$£¬¶þ¼¶»òÈý¼¶µÄ¸ÅÂÊΪ$\frac{3}{5}$£¬ÅжÏΪ¶þÏî·Ö²¼£¬ÔËÓøÅÂʹ«Ê½µÃ³öP£¨¦Ç=k£©=${C}_{10}^{k}$£¨$\frac{2}{5}$£©k¡Á£¨$\frac{3}{5}$£©10-k£¬
½èÖú²»µÈʽ×éµÃ³ö¼´$\left\{\begin{array}{l}{{2C}_{10}^{k}¡Ý{3C}_{10}^{k-1}}\\{{3C}_{10}^{k}¡Ý{2C}_{10}^{k+1}}\end{array}\right.$£¬ÀûÓÃÅÅÁÐ×éºÏÇó½â¼´¿ÉµÃ³ök=4ʱ¸ÅÂÊ×î´ó£¬
ÔËÓÃÑù±¾¹À¼Æ×ÜÌå¼´¿ÉµÃ³öÕâÒ»ÄêµÄ360ÌìÖпÕÆøÖÊÁ¿´ïµ½Ò»¼¶µÄÌìÊýΪ360¡Á$\frac{4}{10}$=144£®
½â´ð ½â£º£¨1£©ÓÉ N=10£¬M=4£¬n=3£¬¦ÎµÄ¿ÉÄÜֵΪ0£¬1£¬2£¬3
ÀûÓÃP£¨¦Î=k£©=$\frac{{{C}_{4}^{k}C}_{6}^{3-k}}{{C}_{10}^{3}}$£¨k=0£¬1£¬2£¬3£©¼´µÃ·Ö²¼ÁУº
¦Î | 0 | 1 | 2 | 3 |
P | $\frac{1}{6}$ | $\frac{1}{2}$ | $\frac{3}{10}$ | $\frac{1}{30}$ |
£¨2£©Ò»¼¶µÄ¸ÅÂÊΪ$\frac{2}{5}$£¬¶þ¼¶»òÈý¼¶µÄ¸ÅÂÊΪ$\frac{3}{5}$
P£¨¦Ç=k£©=${C}_{10}^{k}$£¨$\frac{2}{5}$£©k¡Á£¨$\frac{3}{5}$£©10-k£¬
¸ù¾Ý$\left\{\begin{array}{l}{P£¨k£©¡ÝP£¨k-1£©}\\{P£¨k£©¡ÝP£¨k+1£©}\end{array}\right.$£¬
¼´$\left\{\begin{array}{l}{{2C}_{10}^{k}¡Ý{3C}_{10}^{k-1}}\\{{3C}_{10}^{k}¡Ý{2C}_{10}^{k+1}}\end{array}\right.$
$\frac{17}{5}$¡Ük$¡Ü\frac{22}{5}$£¬
¡àk=4ʱ¸ÅÂÊ×î´ó£¬
¡à10ÌìµÄPM2.5ÈÕ¾ùÖµÀ´¹À¼Æ¦ÇÈ¡4£¬
¹À¼Æ×ÜÌ壺ÕâÒ»ÄêµÄ360ÌìÖпÕÆøÖÊÁ¿´ïµ½Ò»¼¶µÄÌìÊýΪ360¡Á$\frac{4}{10}$=144£®
µãÆÀ ±¾Ì⿼²éÖÐλÊýµÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨺ÍÓ¦Ó㬽âÌâʱҪעÒ⾥ҶͼµÄºÏÀíÔËÓ㬳ä·ÖÀûÓÃÑù±¾¹À¼Æ×ÜÌå½â¾ö£®
A£® | 2$\sqrt{2}$ | B£® | 3 | C£® | 4 | D£® | 5 |