题目内容
在△中,角,,的对边分别为,,,且满足条件,,则△的周长为 .
已知函数在处的切线方程为.
(1)求的值;
(2)求函数的极值.
(3)若在是单调函数,求的取值范围
已知曲线的参数方程为(为参数),以直角坐标系原点为极点,轴正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)若直线的极坐标方程为,求直线被曲线截得的弦长.
点关于直线对称的点坐标是( )
A. B.
C. D.
已知函数.
(1)若,且在上单调递增,求实数的取值范围;
(2)是否存在实数,使得函数在上的最小值为1?若存在,求出实数的值;若不存在,请说明理由.
已知,则函数的值域为( )
《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为( )
A. 尺 B. 尺 C. 尺 D. 尺
下边程序框图的算法思路来源于我国古代数学名著《数书九章》中的“秦九韶算法”求多项式的值.执行程序框图,若输入,,,,则输出的值为( )
A.2 B.1 C.0 D.-1
已知函数(且)的图象恒过定点,若点在直线上,则的最小值为____________.