题目内容

14.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)88.28.48.68.89
销量y(件)908483807568
(1)求回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=-20,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

分析 (1)利用回归直线过样本的中心点($\overline{x}$,$\overline{y}$),即可求出回归直线方程;
(2)设工厂获得利润为L元,利用利润=销售收入-成本,建立函数关系,用配方法求出工厂获得的最大利润.

解答 解:(1)由题意,$\overline{x}$=$\frac{1}{6}$(8+8.2+8.4+8.6+8.8+9)=8.5,
$\overline{y}$=$\frac{1}{6}$(90+84+83+80+75+68)=80;
∵y=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,$\stackrel{∧}{b}$=-20
∴80=-20×8.5+$\stackrel{∧}{a}$,
∴$\stackrel{∧}{a}$=250
∴$\stackrel{∧}{y}$=-20x+250.
(2)设工厂获得的利润为L元,则
L=x(-20x+250)-4(-20x+250)=-20${(x-\frac{33}{4})}^{2}$+361.25,
∴该产品的单价应定为$\frac{33}{4}$元时,工厂获得的利润最大.

点评 本题考查了回归分析,考查了二次函数的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网