题目内容
(本题14分)已知点(1,)是函数且)的图象上一点,等比数列的前项和为,数列的首项为,且前项和满足-=+().
(1)求数列和的通项公式;
(2)若数列{前项和为,问的最小正整数是多少? .
解:(1),∴而
,,
.
又数列成等比数列, ,∴ ;
从而公比,∴ ( ) ;
又,, ∴()
∴数列构成一个首相为1公差为1的等差数列, ,
当, ;
∴ ();
(2)
;
由得,故满足的最小正整数为91.
【解析】略
(本题14分)已知点(1,)是函数且)的图象上一点,等比数列的前项和为,数列的首项为,且前项和满足-=+().(1)求数列和的通项公式;(2)若数列{前项和为,问的最小正整数是多少? .
..(本题14分)已知为常数,且,函数,(,为自然对数的底数)
(Ⅰ)求实数的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)当时,是否同时存在实数和(<),使得对每一个,直线与曲线()都有公共点?若存在,求出最小的实数和最大的实数;若不存在,说明理由.
(本题满分14分)
已知点A(2,0),. P为上的动点,线段BP上的点M满足|MP|=|MA|.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过点B(-2,0)的直线与轨迹C交于S、T两点,且,求直线的方程.
(2)若数列{前项和为,问的最小正整数是多少?