题目内容
若为正实数,则 .
1
解析试题分析:设所以因此考点:指对数运算
平面直角坐标系中,如果与都是整数,就称点为整点,命题:①存在这样的直线,既不与坐标轴平行又不经过任何整点;②如果与都是无理数,则直线不经过任何整点;③如果与都是有理数,则直线必经过无穷多个整点;④存在恰经过一个整点的直线;其中的真命题是 (写出所有真命题编号).
农业技术员进行某种作物的种植密度试验,把一块试验田划分为8块面积相等的区域(除了种植密度,其它影响作物生长的因素都保持一致),种植密度和单株产量统计如下:根据上表所提供信息,第_____号区域的总产量最大,该区域种植密度为_____株/.{第13,14题的第一空3分,第二空2分}
设一列匀速行驶的火车,通过长860的隧道时,整个车身都在隧道里的时间是.该列车以同样的速度穿过长790的铁桥时,从车头上桥,到车尾下桥,共用时,则这列火车的长度为___.
定义“正对数”:现有四个命题:①若,则;②若,则;③若,则;④若,则.其中的真命题有 .(写出所有真命题的编号)
函数在区间()内单调递增,则a的取值范围是
已知函数f(x)=则满足不等式f(f(x))>1的x的取值范围是________.
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)=________.
设,若,则 .