题目内容

对于一个有限数列A:a1,a2,…an,定义A的蔡查罗和(蔡查罗是数学家)为
1
n
(S1+S2+…Sn)
,其中Sk=a1+a2+…ak(1≤k≤n).若一个99项的数列:a1,a2,…a99的蔡查罗和为1000,则数列:2,a1,a2,…a99的蔡查罗和为(  )
分析:由题意可知S1+S2+S3+…+Sn=na1+(n-1)a2+(n-2)a3+…+2an-1+an,由此入手,能够求出数列2、a1、a2、a3、…、a99的蔡查罗和,即得答案.
解答:解:∵S1=a1,Sn=a1+a2+…+an
∴S1+S2+S3+…+Sn=na1+(n-1)a2+(n-2)a3+…+2an-1+an
对于数列a1,a2,…,a99的蔡查罗和为1000
∴S1+S2+S3+…+S99=99a1+98a2+97a3+…+2a98+a99=1000n=99000,
对于数列2,a1,a2,…,a99
S1+S2+S3+…+S100=200+99a1+98a2+97a3+…+2a98+a99=99200;
所以数列2、a1、a2、a3、…、a99的蔡查罗和为992.
故选B.
点评:本题主要考查了数列的性质和应用,同时考查了计算能力,解题时要认真审题.仔细求解,避免出错.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网