ÌâÄ¿ÄÚÈÝ
£¨¢ñ£©ÒÑÖªº¯Êýf(x)=
£®ÊýÁÐ{an}Âú×㣺an£¾0£¬a1=1£¬ÇÒ
=f(
)£¬¼ÇÊýÁÐ{bn}µÄÇ°nÏîºÍΪSn£¬ÇÒSn=
[
+(
+1)n]£®ÇóÊýÁÐ{bn}µÄͨÏʽ£»²¢ÅжÏb4+b6ÊÇ·ñÈÔΪÊýÁÐ{bn}ÖеÄÏÈôÊÇ£¬ÇëÖ¤Ã÷£»·ñÔò£¬ËµÃ÷ÀíÓÉ£®
£¨¢ò£©Éè{cn}ΪÊ×ÏîÊÇc1£¬¹«²îd¡Ù0µÄµÈ²îÊýÁУ¬ÇóÖ¤£º¡°ÊýÁÐ{cn}ÖÐÈÎÒⲻͬÁ½ÏîÖ®ºÍÈÔΪÊýÁÐ{cn}ÖеÄÏµÄ³äÒªÌõ¼þÊÇ¡°´æÔÚÕûÊým¡Ý-1£¬Ê¹c1=md¡±£®
x |
x+1 |
an+1 |
an |
| ||
2 |
1 |
an |
2 |
£¨¢ò£©Éè{cn}ΪÊ×ÏîÊÇc1£¬¹«²îd¡Ù0µÄµÈ²îÊýÁУ¬ÇóÖ¤£º¡°ÊýÁÐ{cn}ÖÐÈÎÒⲻͬÁ½ÏîÖ®ºÍÈÔΪÊýÁÐ{cn}ÖеÄÏµÄ³äÒªÌõ¼þÊÇ¡°´æÔÚÕûÊým¡Ý-1£¬Ê¹c1=md¡±£®
£¨¢ñ£©ÒòΪ
=f(
)=
£¬
ËùÒÔ
=
+1£¬
¼´
-
=1£¬
=1+(n-1)=n£¬
¼´an=
£®£¨4·Ö£©
ÒòΪSn=
[
+(
+1)n]=
n2+(1+
)n£¬
µ±n=1ʱ£¬S1=b1=
+1£¬
µ±n¡Ý2ʱ£¬bn=Sn-Sn-1=1+
n£¬
ËùÒÔbn=
n+1(n¡ÊN*)£®£¨6·Ö£©
ÓÖÒòΪb4+b6=4
+1+6
+1=10
+2£¬
ËùÒÔÁîbt=10
+2 (t¡ÊN*)£¬
Ôò10
+2=
t+1£»
µÃµ½t=10+
Óët¡ÊN*ì¶Ü£¬
ËùÒÔb4+b6²»ÔÚÊýÁÐ{bn}ÖУ®£¨8·Ö£©
£¨¢ò£©³ä·ÖÐÔ£ºÈô´æÔÚÕûÊým¡Ý-1£¬Ê¹c1=md£®
Éècr£¬ctΪÊýÁÐ{cn}Öв»Í¬µÄÁ½Ï
Ôòcr+ct=c1+£¨r-1£©d+c1+£¨t-1£©d=c1+£¨r+m+t-2£©d=c1+[£¨r+m+t-1£©-1]d£®
ÓÖr+t¡Ý3ÇÒm¡Ý-1£¬ËùÒÔr+m+t-1¡Ý1£®
¼´cr+ctÊÇÊýÁÐ{cn}µÄµÚr+m+t-1Ï£¨11·Ö£©
±ØÒªÐÔ£ºÈôÊýÁÐ{cn}ÖÐÈÎÒⲻͬÁ½ÏîÖ®ºÍÈÔΪÊýÁÐ{cn}ÖеÄÏ
Ôòcs=c1+£¨s-1£©d£¬ct=c1+£¨t-1£©d£¬
£¨s£¬tΪ»¥²»ÏàͬµÄÕýÕûÊý£©
Ôòcs+ct=2c1+£¨s+t-2£©d£¬Áîcs+ct=cl£¬
µÃµ½2c1+£¨s+t-2£©d=c1+£¨l-1£©d£¨n£¬t£¬s¡ÊN*£©£¬
ËùÒÔc1=£¨l-s-t+1£©d£¬
ÁîÕûÊým=l-s-t+1£¬ËùÒÔc1=md£® £¨14·Ö£©
ÏÂÖ¤ÕûÊým¡Ý-1
ÈôÉèÕûÊým£¼-1£¬Ôò-m¡Ý2£®Áîk=-m£¬
ÓÉÌâÉèÈ¡c1£¬ckʹc1+ck=cr£¨r¡Ý1£©
¼´c1+c1+£¨k-1£©d=c1+£¨r-1£©d£¬
ËùÒÔmd+£¨-m-1£©d=£¨r-1£©d
¼´rd=0Óër¡Ý1£¬d¡Ù0Ïàì¶Ü£¬ËùÒÔm¡Ý-1£®
×ÛÉÏ£¬ÊýÁÐ{cn}ÖÐÈÎÒⲻͬÁ½ÏîÖ®ºÍÈÔΪÊýÁÐ{cn}ÖеÄÏîµÄ³äÒªÌõ¼þÊÇ´æÔÚÕûÊým¡Ý-1£¬Ê¹c1=md£®£¨16·Ö£©
an+1 |
an |
| ||
|
ËùÒÔ
1 | ||
|
1 | ||
|
¼´
1 | ||
|
1 | ||
|
1 | ||
|
¼´an=
1 |
n2 |
ÒòΪSn=
| ||
2 |
1 |
an |
2 |
| ||
2 |
| ||
2 |
µ±n=1ʱ£¬S1=b1=
2 |
µ±n¡Ý2ʱ£¬bn=Sn-Sn-1=1+
2 |
ËùÒÔbn=
2 |
ÓÖÒòΪb4+b6=4
2 |
2 |
2 |
ËùÒÔÁîbt=10
2 |
Ôò10
2 |
2 |
µÃµ½t=10+
| ||
2 |
ËùÒÔb4+b6²»ÔÚÊýÁÐ{bn}ÖУ®£¨8·Ö£©
£¨¢ò£©³ä·ÖÐÔ£ºÈô´æÔÚÕûÊým¡Ý-1£¬Ê¹c1=md£®
Éècr£¬ctΪÊýÁÐ{cn}Öв»Í¬µÄÁ½Ï
Ôòcr+ct=c1+£¨r-1£©d+c1+£¨t-1£©d=c1+£¨r+m+t-2£©d=c1+[£¨r+m+t-1£©-1]d£®
ÓÖr+t¡Ý3ÇÒm¡Ý-1£¬ËùÒÔr+m+t-1¡Ý1£®
¼´cr+ctÊÇÊýÁÐ{cn}µÄµÚr+m+t-1Ï£¨11·Ö£©
±ØÒªÐÔ£ºÈôÊýÁÐ{cn}ÖÐÈÎÒⲻͬÁ½ÏîÖ®ºÍÈÔΪÊýÁÐ{cn}ÖеÄÏ
Ôòcs=c1+£¨s-1£©d£¬ct=c1+£¨t-1£©d£¬
£¨s£¬tΪ»¥²»ÏàͬµÄÕýÕûÊý£©
Ôòcs+ct=2c1+£¨s+t-2£©d£¬Áîcs+ct=cl£¬
µÃµ½2c1+£¨s+t-2£©d=c1+£¨l-1£©d£¨n£¬t£¬s¡ÊN*£©£¬
ËùÒÔc1=£¨l-s-t+1£©d£¬
ÁîÕûÊým=l-s-t+1£¬ËùÒÔc1=md£® £¨14·Ö£©
ÏÂÖ¤ÕûÊým¡Ý-1
ÈôÉèÕûÊým£¼-1£¬Ôò-m¡Ý2£®Áîk=-m£¬
ÓÉÌâÉèÈ¡c1£¬ckʹc1+ck=cr£¨r¡Ý1£©
¼´c1+c1+£¨k-1£©d=c1+£¨r-1£©d£¬
ËùÒÔmd+£¨-m-1£©d=£¨r-1£©d
¼´rd=0Óër¡Ý1£¬d¡Ù0Ïàì¶Ü£¬ËùÒÔm¡Ý-1£®
×ÛÉÏ£¬ÊýÁÐ{cn}ÖÐÈÎÒⲻͬÁ½ÏîÖ®ºÍÈÔΪÊýÁÐ{cn}ÖеÄÏîµÄ³äÒªÌõ¼þÊÇ´æÔÚÕûÊým¡Ý-1£¬Ê¹c1=md£®£¨16·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªº¯Êýf(x)=
ÊǶ¨ÒåÓòÉϵĵݼõº¯Êý£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
|
A¡¢(
| ||||
B¡¢£¨
| ||||
C¡¢£¨
| ||||
D¡¢[
|