题目内容

已知△ABC中,角A、B、C的对边分别为a、b、c,且
tanA-tanB
tanA+tanB
=
b+c
c

(1)求角A;
(2)若
BA
AC
=6
,求a的最小值.
分析:(1)把等号左边的切换成正余弦,把等号右边利用正弦定理把便当问题转化成角的正弦,进而化简整理求得2cosAsinB=-sinB进而求得cosA的值,则A可得.
(2)利用平面向量的数量积的运算,求得bc的值,进而利用余弦定理建立等式,利用基本不等式求得a的最小值.
解答:解:(1)∵
tanA-tanB
tanA+tanB
=
b+c
c

sinAcosB-sinBcosA
sinAcosB+sinBcosA
=
sinB+sinC
sinC

sinAcosB-sinBcosA
sin(A+B)
=
sinB+sinC
sinC

∵sin(A+B)=sinC>0
∴sinAcosB-sinBcosA=sinB+sin(A+B)
∴2cosAsinB=-sinB
∵sinB>0∴cosA=-
1
2
∵A∈(0,π)∴A=
3

(2)
∵BA
AC
=6

∴bc•cos60°=6
∴bc=12
∵a2=b2+c2-2bccosA
∴a2=b2+c2+bc≥3bc=36
当且仅当b=c=2
3
时,amin=6.
点评:本题主要考查了正弦定理的应用,基本不等式的求最值,以及平面向量的数量积.考查了学生综合分析问题和基本的运算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网