题目内容
设A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}
(1)A∩B=A∪B,求a的值;
(2)若∅?(A∩B)且A∩C=∅,求a的值;
(3)A∩B=A∩C≠∅,求a的值.
(1)A∩B=A∪B,求a的值;
(2)若∅?(A∩B)且A∩C=∅,求a的值;
(3)A∩B=A∩C≠∅,求a的值.
分析:先通过解二次方程化简集合B,C.
(1)根据A∩B=A∪B⇒A=B,利用二次方程根与系数的关系列出方程求出a的值.
(2)根据∅?(A∩B)且A∩C=∅,⇒3∈A,将3代入二次方程求出a,注意要验证是否满足题意.
(3)由A∩B=A∩C≠∅,⇒2∈A,将2代入二次方程求出a,注意要验证是否满足题意.
(1)根据A∩B=A∪B⇒A=B,利用二次方程根与系数的关系列出方程求出a的值.
(2)根据∅?(A∩B)且A∩C=∅,⇒3∈A,将3代入二次方程求出a,注意要验证是否满足题意.
(3)由A∩B=A∩C≠∅,⇒2∈A,将2代入二次方程求出a,注意要验证是否满足题意.
解答:解:(1)∵B={x|x2-5x+6=0}={ 2,3 },A∩B=A∪B,∴A=B.
∴2和3是方程 x2-ax+a2-19=0 的两个根,∴2+3=a,∴a=5.
(2)∵∅?(A∩B)且A∩C=∅,∴A与B有公共元素而与C无公共元素,∴3∈A
∴9-3a+a2-19=0,解得a=-2,或a=5.
当a=-2时,A={3,-5}满足题意;当a=5时,A={2,3}此时A∩C={2}不满足题意,∴a=-2
(3)A∩B=A∩C≠∅,∴2∈A,∴4-2a+a2-19=0解得a=-3,a=5.
当a=-3时,A={2,-5}满足题意;当a=5时,A={2,3}不满足题意,故a=-3.
故答案为:5,-2,-3.
∴2和3是方程 x2-ax+a2-19=0 的两个根,∴2+3=a,∴a=5.
(2)∵∅?(A∩B)且A∩C=∅,∴A与B有公共元素而与C无公共元素,∴3∈A
∴9-3a+a2-19=0,解得a=-2,或a=5.
当a=-2时,A={3,-5}满足题意;当a=5时,A={2,3}此时A∩C={2}不满足题意,∴a=-2
(3)A∩B=A∩C≠∅,∴2∈A,∴4-2a+a2-19=0解得a=-3,a=5.
当a=-3时,A={2,-5}满足题意;当a=5时,A={2,3}不满足题意,故a=-3.
故答案为:5,-2,-3.
点评:本小题主要考查交、并、补集的混合运算、集合关系中的参数取值问题、方程的解法等基础知识,考查运算求解能力,考查方程思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目