题目内容
(理)S=
+
+…+
+…,则S=
-
-
.
1 |
1×2×3 |
1 |
2×3×4 |
1 |
n(n+1)(n+2) |
1 |
4 |
1 |
2(n+1)(n+2) |
1 |
4 |
1 |
2(n+1)(n+2) |
分析:
=
[
-
],利用裂项相消法可求和S.
1 |
n(n+1)(n+2) |
1 |
2 |
1 |
n(n+1) |
1 |
(n+1)(n+2) |
解答:解:∵
=
[
-
],
∴S=
[
-
+
-
+…+
-
]
=
[
-
]=
-
,
故答案为:
-
.
1 |
n(n+1)(n+2) |
1 |
2 |
1 |
n(n+1) |
1 |
(n+1)(n+2) |
∴S=
1 |
2 |
1 |
1×2 |
1 |
2×3 |
1 |
2×3 |
1 |
3×4 |
1 |
n(n+1) |
1 |
(n+1)(n+2) |
=
1 |
2 |
1 |
2 |
1 |
(n+1)(n+2) |
1 |
4 |
1 |
2(n+1)(n+2) |
故答案为:
1 |
4 |
1 |
2(n+1)(n+2) |
点评:本题考查数列求和,裂项相消法对数列求和是高考考查重点,应熟练掌握.
练习册系列答案
相关题目