题目内容

(理)S=
1
1×2×3
+
1
2×3×4
+…+
1
n(n+1)(n+2)
+…,则S
=
1
4
-
1
2(n+1)(n+2)
1
4
-
1
2(n+1)(n+2)
分析:
1
n(n+1)(n+2)
=
1
2
[
1
n(n+1)
-
1
(n+1)(n+2)
],利用裂项相消法可求和S.
解答:解:∵
1
n(n+1)(n+2)
=
1
2
[
1
n(n+1)
-
1
(n+1)(n+2)
],
∴S=
1
2
[
1
1×2
-
1
2×3
+
1
2×3
-
1
3×4
+…+
1
n(n+1)
-
1
(n+1)(n+2)
]
=
1
2
[
1
2
-
1
(n+1)(n+2)
]=
1
4
-
1
2(n+1)(n+2)

故答案为:
1
4
-
1
2(n+1)(n+2)
点评:本题考查数列求和,裂项相消法对数列求和是高考考查重点,应熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网