题目内容
已知函数:
,
.
⑴解不等式
;
⑵若对任意的
,
,求
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025104953827.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025104969700.png)
⑴解不等式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025104984631.png)
⑵若对任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025104984582.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105015622.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105031337.png)
(1) ①
时,不等式的解为R; ②
或
时,
或
;(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105047603.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105062504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105078519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105125780.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105140804.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105156515.png)
试题分析:(1)含参数的二次不等式的解法要考虑判别式的值.(2)本题较难就是绝对值的处理,把x的范围按正负分开在讨论,特别是小于零部分的处理要细心,应用基本不等式的知识.
试题解析:⑴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025104984631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105187746.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105281800.png)
①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105296409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105047603.png)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105312401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105062504.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105078519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105359789.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105374823.png)
不等式的解为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105390784.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105405809.png)
⑵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105421954.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025104984582.png)
①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105452475.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240251054681019.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105483817.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105452475.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105499547.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105515443.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105530566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105546427.png)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105561568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240251055771093.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105577902.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105593450.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105561568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105624455.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105639558.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105655445.png)
③当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105655367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105671474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105031337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025105702477.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
题目内容