题目内容
用数学归纳法证明42n+1+3n+2能被13整除,其中n∈N*.
见解析
解析
从从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,推广到第n个等式为 。
设为三角形的三边,求证:
蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n个图的蜂巢总数.(1)试给出f(4),f(5)的值,并求f(n)的表达式(不要求证明);(2)证明:+++…+<.
已知,,.(1)当时,试比较与的大小关系;(2)猜想与的大小关系,并给出证明.
用反证法证明:已知,,,求证:,,.
如图所示的多面体中, 是菱形,是矩形,平面,,.(1)求证:平面平面;(2)若二面角为直二面角,求直线与平面所成的角的正弦值.
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
从1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,推广到第个等式为___________________