题目内容

椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的左准线为l,左、右焦点分别为F1,F2,抛物线C2的准线也为l,焦点为F2,记C1与C2的一个交点为P,则
|F1F2|
|PF1|
-
|PF1|
|PF2|
=(  )
A、
1
2
B、1
C、2
D、与a,b的取值无关
分析:P到椭圆的左准线的距离设为d,先利用椭圆的第二定义求得|PF1|=
c
a
d,利用抛物线的定义可知|PF2|=d,最后根据椭圆的定义可知|PF2|+|PF1|=2a且
|PF1|
|PF2|
=
c
a
,求得|PF2|,|PF1|,可得
|F1F2|
|PF1|
-
|PF1|
|PF2|
解答:解:椭圆的离心率为
c
a

P到椭圆的左准线的距离设为d,
则|PF1|=
1
2
d,|PF2|+|PF1|=2a,又|PF2|=d,
∴d=|PF2|=
2a2
a+c
,|PF1|=
2ac
a+c

|F1F2|
|PF1|
-
|PF1|
|PF2|
=
2c
2ac
a+c
-
c
a
=1

故选B.
点评:本题主要考查了椭圆的简单性质.解题的关键是灵活利用椭圆和抛物线的定义.本题考查圆锥曲线的综合应用,解题时要认真审题,注意公式的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网