题目内容

如图,四棱锥中,侧面是等边三角形,在底面等腰梯形中,的中点,的中点,.

(1)求证:平面平面

(2)求证:平面.

 

【答案】

(1)证明过程详见解析;(2)证明过程详见解析.

【解析】

试题分析:本题主要以四棱锥为几何背景考查线线垂直、线面垂直、面面垂直、线面平行的判定,运用传统几何法证明,突出考查空间想象能力.第一问,利用已知的边长和特殊关系,证明出,所以利用线面垂直的判定定理就会得出平面,再利用面面垂直的判定定理即可;第二问,先利用线面平行的判定定理证明∥平面,通过同位角相等可以得出,再证明平面,再通过面面平行的判定定理得到平面∥平面,所以面内的线平行平面.

试题解析:(Ⅰ)∵是等边三角形,的中点,

.        2分

∵在,        3分

,∴

中,,    4分

是直角三角形.∴

又∵,∴平面

又∵平面,∴平面⊥平面.    6分

(Ⅱ)取的中点,连接

点分别是的中点,∴

平面平面,所以∥平面.         8分

∵点的中点,∴

,∴是等边三角形,∴

平面平面,所以平面

,∴平面∥平面

平面,∴平面.           12分

考点:1.余弦定理;2.勾股定理;3.线面垂直的判定定理;4.面面垂直的判定定理;5.线面平行的判定定理;6.面面平行的判定定理.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网