题目内容
(几何证明)如图,已知AB是⊙O的直径,AC是⊙O的弦,∠BAC的平分线AD交⊙O于D,过点D作DE⊥AC交AC的延长线于点E,OE交AD于点F.若,则的值为________.
分析:连接OD,BC,设AC=3k,AB=5k,BC=4k,可证OD垂直平分BC,利用勾股定理可得到OG,得到DG,于是AE=4k,然后通过OD∥AE,利用相似比即可求出 的值.
解答:连接OD,BC,如图,
∵AB为直径,
∴∠ACB=90°,
又OD∥AE,∴∠OGB=∠ACB=90°,
∴OD⊥BC,
∴G为BC的中点,即BG=CG,
又∵=,
∴设AC=3k,AB=5k,根据勾股定理得:BC==4k,
∴OB=AB=,BG=BC=2k,
∴OG==,
∴DG=OD-OG=-=k,
又四边形CEDG为矩形,
∴CE=DG=k,
∴AE=AC+CE=3k+k=4k,
而OD∥AE,
∴===.
故答案为:.
点评:考查了与圆有关的比例线段,能够综合运用勾股定理、相似三角形的判定和性质以及平行线分线段成比例定理,属于基础题.
练习册系列答案
相关题目