题目内容

(1)已知f(x)为一次函数,f[f(x)]=2x-1,求f(x)的解析式.
(2)函数y=f(x)是(-∞,+∞)上的奇函数,当x>0时f(x)=x2-2x-3,求函数y=f(x)的解析式.
(3)已知a,b为常数,若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,求5a-b的值.
分析:(1)运用待定系数法,设一次函数为f(x)=ax+b,代入已知后通过比较系数列方程求出a、b即可
(2)运用对称性求解析式,先确定f(0)=0,再设x<0,利用奇函数性质和x>0时f(x)=x2-2x-3,求出x<0时函数解析式,最后将函数解析式合成分段函数
(3)运用待待定系数法,将ax+b代入f(x)=x2+4x+3,化简后比较系数,列方程求出a、b即可
解答:解:(1)设f(x)=ax+b,则f(f(x))=a(ax+b)+b=a2x+ab+b
∵f[f(x)]=2x-1,∴a2x+ab+b=2x-1
∴a2=2且ab+b=-1,解得a=
2
,b=1-
2
或a=-
2
,b=1+
2

f(x)=
2
x+1-
2
f(x)=-
2
x+1+
2

(2)∵y=f(x)是(-∞,+∞)上的奇函数,∴f(0)=0
下面求x<0时函数解析式
设x<0,则-x>0
∴f(-x)=(-x)2-2(-x)-3=x2+2x-3
∵y=f(x)是(-∞,+∞)上的奇函数
∴f(-x)=-f(x)
∴x<0时函数解析式f(x)=-x2-2x+3
∴函数y=f(x)的解析式为
x2-2x-3     (x>0)
0              (x=0)
-x2-2x+3   (x<0)

(3)∵f(x)=x2+4x+3
∴f(ax+b)=(ax+b)2+4(ax+b)+3=a2x2+(2ab+4a)x+b2+4b+3=x2+10x+24
a2=1
2ab+4a=10
b2+4b+3=24
,解得
a=1
b=3
a=-1
b=-7

∴5a-b=2
点评:本题考察了求函数解析式的方法,待定系数法,对称性法,配凑法等,解题时要归纳解题规律,认清形式,准确选择恰当方法解决问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网