题目内容
(1)已知f(x)为一次函数,f[f(x)]=2x-1,求f(x)的解析式.
(2)函数y=f(x)是(-∞,+∞)上的奇函数,当x>0时f(x)=x2-2x-3,求函数y=f(x)的解析式.
(3)已知a,b为常数,若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,求5a-b的值.
(2)函数y=f(x)是(-∞,+∞)上的奇函数,当x>0时f(x)=x2-2x-3,求函数y=f(x)的解析式.
(3)已知a,b为常数,若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,求5a-b的值.
(1)设f(x)=ax+b,则f(f(x))=a(ax+b)+b=a2x+ab+b
∵f[f(x)]=2x-1,∴a2x+ab+b=2x-1
∴a2=2且ab+b=-1,解得a=
,b=1-
或a=-
,b=1+
∴f(x)=
x+1-
或f(x)=-
x+1+
(2)∵y=f(x)是(-∞,+∞)上的奇函数,∴f(0)=0
下面求x<0时函数解析式
设x<0,则-x>0
∴f(-x)=(-x)2-2(-x)-3=x2+2x-3
∵y=f(x)是(-∞,+∞)上的奇函数
∴f(-x)=-f(x)
∴x<0时函数解析式f(x)=-x2-2x+3
∴函数y=f(x)的解析式为
(3)∵f(x)=x2+4x+3
∴f(ax+b)=(ax+b)2+4(ax+b)+3=a2x2+(2ab+4a)x+b2+4b+3=x2+10x+24
∴
,解得
或
∴5a-b=2
∵f[f(x)]=2x-1,∴a2x+ab+b=2x-1
∴a2=2且ab+b=-1,解得a=
2 |
2 |
2 |
2 |
∴f(x)=
2 |
2 |
2 |
2 |
(2)∵y=f(x)是(-∞,+∞)上的奇函数,∴f(0)=0
下面求x<0时函数解析式
设x<0,则-x>0
∴f(-x)=(-x)2-2(-x)-3=x2+2x-3
∵y=f(x)是(-∞,+∞)上的奇函数
∴f(-x)=-f(x)
∴x<0时函数解析式f(x)=-x2-2x+3
∴函数y=f(x)的解析式为
|
(3)∵f(x)=x2+4x+3
∴f(ax+b)=(ax+b)2+4(ax+b)+3=a2x2+(2ab+4a)x+b2+4b+3=x2+10x+24
∴
|
|
|
∴5a-b=2
练习册系列答案
相关题目