题目内容
已知三棱锥
的三视图如图所示.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240148260179134.jpg)
(Ⅰ)求证:
是直角三角形;
求三棱锥
是全面积;
(Ⅲ)当点
在线段
上何处时,
与平面
所成的角为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826002534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240148260179134.jpg)
(Ⅰ)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826048531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826064407.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826002534.png)
(Ⅲ)当点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826095318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826126383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826158410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826173441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826204379.png)
1)根据视图中所给的数据特证可以证明BC⊥面PAB,由线面垂直的性质证出BC⊥PB,由此证得三角形为直角三角形,(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826236639.png)
(3)当
为线段
的中点时,
与平面
所成的角为![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826204379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826236639.png)
(3)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826095318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826126383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826158410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826173441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826204379.png)
试题分析:解析:(Ⅰ)由三视图可得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240148263601086.png)
由俯视图知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826376826.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826407853.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826438653.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826454532.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826048531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826485309.png)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826516944.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826532492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826563977.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826579949.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826610505.png)
由(Ⅰ)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826048531.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826657900.png)
故三棱锥
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826002534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826236639.png)
(Ⅲ)在面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826704473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826719300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826735401.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826750419.png)
以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826719300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826797635.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826813266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826844310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826875231.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240148268912279.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826922688.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826173441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240148269531645.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240148269841598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014827016168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014827031625.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014827062996.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240148270941466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240148271091835.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240148271402859.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240148271721060.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826095318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826126383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826158410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826173441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014826204379.png)
点评:本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是四棱锥的体积,其公式为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014827265327.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目