题目内容
15.求证:$\frac{1-co{s}^{4}θ-si{n}^{2}θ}{1-si{n}^{4}θ-co{s}^{2}θ}$=$\frac{1-2si{n}^{2}θco{s}^{2}θ}{si{n}^{4}θ+co{s}^{4}θ}$.分析 由平方差公式和sin2θ+cos2θ=1,推导出左边=1,再把右式中的1换为(sin2θ+cos2θ)2,推导出右边=1,由此能证明$\frac{1-co{s}^{4}θ-si{n}^{2}θ}{1-si{n}^{4}θ-co{s}^{2}θ}$=$\frac{1-2si{n}^{2}θco{s}^{2}θ}{si{n}^{4}θ+co{s}^{4}θ}$.
解答 证明:$\frac{1-co{s}^{4}θ-si{n}^{2}θ}{1-si{n}^{4}θ-co{s}^{2}θ}$
=$\frac{(1-co{s}^{2}θ)(1+co{s}^{2}θ)-si{n}^{2}θ}{(1-si{n}^{2}θ)(1+si{n}^{2}θ)-co{s}^{2}θ}$
=$\frac{si{n}^{2}θ+si{n}^{2}θco{s}^{2}θ-si{n}^{2}θ}{co{s}^{2}θ+co{s}^{2}θsi{n}^{2}θ-co{s}^{2}θ}$
=$\frac{si{n}^{2}θco{s}^{2}θ}{co{s}^{2}θsi{n}^{2}θ}$=1,
$\frac{1-2si{n}^{2}θco{s}^{2}θ}{si{n}^{4}θ+co{s}^{4}θ}$=$\frac{si{n}^{2}θ+co{s}^{2}θ-2si{n}^{2}θco{s}^{2}θ}{si{n}^{4}θ+co{s}^{4}θ}$
=$\frac{(si{n}^{2}θ+co{s}^{2}θ)^{2}-2si{n}^{2}θco{s}^{2}θ}{si{n}^{4}θ+co{s}^{4}θ}$
=$\frac{si{n}^{4}θ+co{s}^{4}θ}{si{n}^{4}θ+co{s}^{4}θ}$=1.
∴$\frac{1-co{s}^{4}θ-si{n}^{2}θ}{1-si{n}^{4}θ-co{s}^{2}θ}$=$\frac{1-2si{n}^{2}θco{s}^{2}θ}{si{n}^{4}θ+co{s}^{4}θ}$.
点评 本题考查三角恒等式的证明,是中档题,解题时要认真审题,注意平方差公式、sin2θ+cos2θ=1,(sin2θ+cos2θ)2=1的合理运用.
堵车时间(小时) | 频数 |
[0,1] | 8 |
(1,2] | 6 |
(2,3] | 38 |
(3,4] | 24 |
(4,5] | 24 |
路段 | CD | EF | GH |
堵车概率 | x | y | $\frac{1}{4}$ |
平均堵车时间(小时) | a | 2 | 1 |
(Ⅱ)若走甲、乙路线所花汽油费的期望值相等,且x=$\frac{11}{12}$,求y的值.
A. | (4,2) | B. | (-4,2) | C. | (4,2)或(-4,2) | D. | (2,4) |