题目内容

(2012•江苏三模)数列{an}的前n项和为Sn,存在常数A,B,C,使得an+Sn=An2+Bn+C对任意正整数n都成立.
(1)若数列{an}为等差数列,求证:3A-B+C=0;
(2)若A=-
1
2
,B=-
3
2
,C=1
,设bn=an+n,数列{nbn}的前n项和为Tn,求Tn
(3)若C=0,{an}是首项为1的等差数列,设P=
2012
i=1
1+
1
a
2
i
+
1
a
2
i+1
,求不超过P的最大整数的值.
分析:(1)先根据条件都转化为首项和公差的形式,再根据等差数列的前n项和Sn所满足的条件即可得到结论.
(2)先根据前n项和Sn以及通项之间的关系求出{an}的通项,进而得到数列{nbn}的通项,再结合错位相减法即可求出Tn
(3)先根据条件求出{an}的通项;进而根据裂项求和法求出P的表达式,即可得到结论.
解答:解:(1)因为{an}为等差数列,设公差为d,由an+Sn=An2+Bn+C
a1+(n-1)d+na1+
1
2
n(n-1)d=An2+Bn+C

(
1
2
d-A)n2+(a1+
d
2
-B)n+(a1-d-C)=0
对任意正整数n都成立.
所以
1
2
d-A=0
a1+
1
2
d-B=0
a1-d-C=0
所以3A-B+C=0.       …(4分)
(2)因为an+Sn=-
1
2
n2-
3
2
n+1
,所以a1=-
1
2

当n≥2时,an-1+Sn-1=-
1
2
(n-1)2-
3
2
(n-1)+1

所以2an-an-1=-n-1,即2(an+n)=an-1+n-1,
所以bn=
1
2
bn-1(n≥2)
,而b1=a1+1=
1
2

所以数列{bn}是首项为
1
2
,公比为
1
2
的等比数列,所以bn=(
1
2
)n
. …(7分)
于是nbn=
n
2n
.所以Tn=
1
2
+
2
22
+
3
23
+…+
n
2n
①,
1
2
Tn=
1
22
+
2
23
+
3
24
+…+
n
2n+1
,②
由①-②,得
1
2
Tn=
1
2
+
1
22
+
1
23
+…+
1
2n
-
n
2n+1
=
1
2
[1-(
1
2
)
n
]
1-
1
2
-
n
2n+1
=1-(
1
2
)n-
n
2n+1
=1-
2+n
2n+1

所以Tn=2-
2+n
2n
.…(10分)
(3)因为{an}是首项为1的等差数列,由(1)知,公差d=1,所以an=n.
1+
1
n2
+
1
(n+1)2
=
n2(n+1)2+(n+1)2+n2
n2(n+1)2
=
n(n+1)+1
n(n+1)
=1+
1
n(n+1)
=1+
1
n
-
1
n+1
,…(14分)
所以P=(1+
1
1
-
1
2
)+(1+
1
2
-
1
3
)+(1+
1
3
-
1
4
)+…+(1+
1
2012
-
1
2013
)=2013-
1
2013

所以,不超过P的最大整数为2012.…(16分)
点评:本题主要考察由数列的递推式求数列的和,其中涉及到数列求和的错位相减法以及裂项求和法,是对数列知识的综合考察,主要考察计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网