题目内容
【题目】某学校为了分析在一次数学竞赛中甲、乙两个班的数学成绩,分别从甲、乙两个班中随机抽取了10个学生的成绩,成绩的茎叶图如下:
(Ⅰ)根据茎叶图,计算甲班被抽取学生成绩的平均值及方差;
(Ⅱ)若规定成绩不低于90分的等级为优秀,现从甲、乙两个班级所抽取成绩等级为优秀的学生中,随机抽取2人,求这两个人恰好都来自甲班的概率.
【答案】(Ⅰ), (Ⅱ)
【解析】
试题分析:(Ⅰ)根据平均数计算公式及方差计算公式得,(Ⅱ)甲、乙两个班级等级为优秀的学生分别有3个和4个,利用列举法得抽取2人基本事件数为21,而两个人恰好都来自甲班的事件数为3个,因此所求概率为
试题解析:(Ⅰ),
.
(Ⅱ)记甲班获优秀等次的三名学生分别为:,
乙班获优秀等次的四名学生分别为:.
记随机抽取2人为事件,这两人恰好都来自甲班为事件.
事件所包含的基本事件有:
共21个,
事件所包含的基本事件有:共3个,
所以.
【题目】2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.
(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的列联表.请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;
(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为,求的分布列及数学期望.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
附参考公式及数据:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |