题目内容
(2011•奉贤区二模)(文) 如图都是由边长为1的正方体叠成的图形.例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位.依此规律,则第n个图形的表面积是
3n(n+1)
3n(n+1)
个平方单位.分析:结合图形,发现第(1)个图形的表面积是1×6=6,第(2)个图形的表面积是(1+2)×6=18,第(3)图形的表面积是(1+2+3)×6=36;以此类推即可求解.
解答:解:结合图形,发现:
第(1)个图形的表面积是1×6=6,
第(2)个图形的表面积是(1+2)×6=18,
第(3)图形的表面积是(1+2+3)×6=36,
第(4)图形的表面积是(1+2+3+4)×6=60,
…
故第n个图形的表面积是(1+2+3+…+n)×6=3n(n+1)
故答案为:3n(n+1)
第(1)个图形的表面积是1×6=6,
第(2)个图形的表面积是(1+2)×6=18,
第(3)图形的表面积是(1+2+3)×6=36,
第(4)图形的表面积是(1+2+3+4)×6=60,
…
故第n个图形的表面积是(1+2+3+…+n)×6=3n(n+1)
故答案为:3n(n+1)
点评:本题考查的知识点是归纲推理,其中从已知中的四个图形中,找出其表面积的变化规律,并进行大胆推断,是解答本题的关键.
练习册系列答案
相关题目