题目内容

对正整数n,设抛物线y2=2(2n+1)x,过P(2n,0)任作直线l交抛物线于An,Bn两点,则数列{
OA
n
OB
n
2(n+1)
}
的前n项和公式是______.
设直线方程为x=ty+2n,代入抛物线方程得y2-2(2n+1)ty-4n(2n+1)=0,
设An(xn1,yn1),B(xn2,yn2),
OAn
OBn
=xn1xn2+yn1yn2=(t2+1)yn1yn2+2nt(yn1+yn2)+4n2

用韦达定理代入得
OAn
OBn
=-4n(2n+1)(t2+1)+4n(2n+1)t2+4n2=-4n2-4n

OA
n
OB
n
2(n+1)
=-2n

故数列{
OA
n
OB
n
2(n+1)
}
的前n项和-n(n+1),
故答案为-n(n+1).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网