题目内容
【题目】已知函数.
(1)若是函数的极值点,求a的值;
(2)令,若对任意,有恒成立,求a的取值范围;
(3)设m,n为实数,且,求证:.
【答案】(1);(2);(3)见解析.
【解析】
(1)先求出,令后可得的值,注意检验.
(2)参变分离后可得对任意的恒成立,利用导数可得的最小值,从而可得的取值范围.
(3)原不等式等价于且,可通过构建新函数及,再利用导数可证当时,,从而可得原不等式成立.
(1),
因为是函数的极值点,故即,
又当时,,
当时,,当时,,
故是函数的极小值点,
综上,.
(2),故对任意的恒成立等价于:
对任意的恒成立.
令,,
则,
令,则,
当时,,故为上的单调增函数,
所以,
故时,,故为上的单调增函数,
所以,故.
(3)要证,因为,
故即证且,
即证且.
令,,则.
因为,,所以即,
所以为上的增函数,故当时,有.
令,则,故即.
令,,
则,故,
当时,,故为上的增函数,故当时,有,
所以为上的增函数,故当时,有,
令,则有,
也就是.
综上,原不等式恒成立.
【题目】为调查某公司五类机器的销售情况,该公司随机收集了一个月销售的有关数据,公司规定同一类机器销售价格相同,经分类整理得到下表:
机器类型 | 第一类 | 第二类 | 第三类 | 第四类 | 第五类 |
销售总额(万元) | |||||
销售量(台) | |||||
利润率 |
利润率是指:一台机器销售价格减去出厂价格得到的利润与该机器销售价格的比值.
(Ⅰ)从该公司本月卖出的机器中随机选一台,求这台机器利润率高于0.2的概率;
(Ⅱ)从该公司本月卖出的销售单价为20万元的机器中随机选取台,求这两台机器的利润率不同的概率;
(Ⅲ)假设每类机器利润率不变,销售一台第一类机器获利万元,销售一台第二类机器获利万元,…,销售一台第五类机器获利,依据上表统计数据,随机销售一台机器获利的期望为,设,试判断与的大小.(结论不要求证明)
【题目】某省即将实行新高考,不再实行文理分科.某校为了研究数学成绩优秀是否对选择物理有影响,对该校2018级的1000名学生进行调查,收集到相关数据如下:
(1)根据以上提供的信息,完成列联表,并完善等高条形图;
选物理 | 不选物理 | 总计 | |
数学成绩优秀 | |||
数学成绩不优秀 | 260 | ||
总计 | 600 | 1000 |
(2)能否在犯错误的概率不超过0.05的前提下认为数学成绩优秀与选物理有关?
附:
临界值表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
【题目】“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”……江南梅雨的点点滴滴都流润着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南镇2009~2018年梅雨季节的降雨量(单位:)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:
“梅实初黄暮雨深”.请用样本平均数估计镇明年梅雨季节的降雨量;
“江南梅雨无限愁”.镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅2009~2018年的亩产量(/亩)与降雨量的发生频数(年)如列联表所示(部分数据缺失).请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小?
(完善列联表,并说明理由).
亩产量\降雨量 | 合计 | ||
<600 | 2 | ||
1 | |||
合计 | 10 |
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.703 |
(参考公式:,其中)