题目内容
若<<0, 则(1)a+ b < a b, (2)|a|>|b|, (3)a<b, (4)中正确的有___________.
(1)(4)
解析
.若<<0,则下列不等式:①a+b<ab;②|a|>|b|;③a<b;④+>2.正确的不等式有
A.1个 B.2个 C.3个 D.4个
本题主要考查不等式的性质及均值不等式的适用条件.
若a<0,则函数y=(1-a)x-1的图象必过点( )
A.(0,1) B.(0,0)
C.(0,-1) D.(1,-1)
若<<0,则下列不等式:①a+b<ab;②|a|>|b|;③a<b;④a2<b2中,正确的个数是( )
A.1 B.2 C.3 D.4
若<<0,则下列不等式:①a+b<ab;②|a|>|b|;③a<b;④+>2中正确的是 ( )
A.①② B.②③ C.①④ D.③④
已知函数f(x)=alnx-x2+1.
(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;
(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.
【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。
(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,
∵g′(x)=-2x+1=(x>0),
∴-2x2+x+a≤0在x>0时恒成立,
∴1+8a≤0,a≤-,又a<0,
∴a的取值范围是