题目内容
已知函数定义在区间上,,且当时,
恒有.又数列满足.
(1)证明:在上是奇函数;
(2)求的表达式;
(3)设为数列的前项和,若对恒成立,求的最小值.
【答案】
(Ⅰ)证明略
(Ⅱ)
(III) m的最小值为7.
【解析】本试题主要是考查了函数与数列的综合运用
(1)通过赋值法得到函数奇偶性的判定。
(2)因为令x=an,y=-an,于是,由已知得2f (an)=f (an+1),从而求解得到解析式。
(3)由(II)得f(an+1)=-2n,那么整体思想得到参数m的最值。
练习册系列答案
相关题目