题目内容

17.设P为双曲线C:x2-y2=1上一点,F1、F2分别为双曲线C的左右焦点,若cos∠F1PF2=$\frac{1}{3}$,则△PF1F2的外接圆的半径为(  )
A.$\frac{3}{2}$B.3C.$\frac{9}{4}$D.9

分析 求出双曲线的a,b,c,得到焦距,再由同角的平方关系结合三角形中的正弦定理,可得外接圆的直径,进而得到半径.

解答 解:由cos∠F1PF2=$\frac{1}{3}$,
可得sin∠F1PF2=$\sqrt{1-\frac{1}{9}}$=$\frac{2\sqrt{2}}{3}$,
双曲线C:x2-y2=1的a=b=1,c=$\sqrt{2}$,
即有|F1F2|=2c=2$\sqrt{2}$,
在三角形PF1F2中,由正弦定理可得,
△PF1F2的外接圆的直径为$\frac{|{F}_{1}{F}_{2}|}{sin∠{F}_{1}P{F}_{2}}$=$\frac{2\sqrt{2}}{\frac{2\sqrt{2}}{3}}$=3,
即有△PF1F2的外接圆的半径为$\frac{3}{2}$.
故选:A.

点评 本题考查双曲线的方程和性质,主要考查双曲线的焦距,同时考查正弦定理的运用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网