题目内容
20.有下列命题:①x=0是函数y=x3+1的极值点;
②三次函数f(x)=ax3+bx2+cx+d有极值点的充要条件是b2-3ac>0;
③奇函数f(x)=mx3+(m-1)x2+48(m-2)x+n在区间(4,+∞)上是递增的;
其中真命题的序号是②③.
分析 ①用极值点的定义的来判断;
②通过导数有不等根来判断;
③当x>4时,f′(x)>0恒成立来判断.
解答 解:①y′=3x2≥0,无极值点,故①错误;
②f′(x)=3ax2+2bx+c=0有解,需满足:b2-3ac>,故②正确;
③f′(x)=3mx2+2(m-1)x+48(m-2),当x>4时,f′(x)>0,故③正确;
故答案为:②③.
点评 本题主要考查函数极值点的定义及有极值的条件,考查函数的单调性,比较基础.
练习册系列答案
相关题目
5.已知θ是第二象限的角,且sin$\frac{θ}{2}$<cos$\frac{θ}{2}$,那么sin$\frac{θ}{2}$+cos$\frac{θ}{2}$的取值范围是( )
A. | (-1,0) | B. | (1,$\sqrt{2}$) | C. | (-1,1) | D. | (-$\sqrt{2}$,-1) |
10.已知$\overrightarrow{{P}_{1}{P}_{2}}$=-$\frac{4}{3}$$\overrightarrow{{P}_{1}P}$,若$\overrightarrow{{P}_{1}P}$=-λ$\overrightarrow{P{P}_{2}}$,则λ=( )
A. | -3 | B. | 3 | C. | -$\frac{1}{2}$ | D. | -$\frac{3}{2}$ |