题目内容
已知等差数列{an}的前n项和为 Sn
(I)若a1=1,S10= 100,求{an}的通项公式;
(II)若Sn=n2-6n,解关于n的不等式Sn+an>2n
(I)若a1=1,S10= 100,求{an}的通项公式;
(II)若Sn=n2-6n,解关于n的不等式Sn+an>2n
(I)
; (II)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746675565.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746690616.png)
试题分析:(I)要求等差数列的通项公式,由已知条件只需再找到d即可,由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746706544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746722388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240207467371265.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746753348.png)
试题解析:
(I)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746768454.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746784319.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746800379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746815888.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746831575.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746846412.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746862561.png)
(II)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746878604.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746893423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746909795.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746924577.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746893423.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746940336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746956641.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746924577.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020746987744.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020747002609.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020747018601.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020747034386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020747049370.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020747034386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020747080421.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目