题目内容

(本题13分)设,函数

(1)设不等式的解集为C,当时,求实数取值范围;

(2)若对任意,都有成立,求时,的值域;

(3)设 ,求的最小值.

 

【答案】

(1)(2)(3)

【解析】本试题主要是研究二次函数的 性质的运用。利用函数的单调性和不等式的知识的综合运用得到。

(1)根据不等式的解集得到C,然后利用集合的并集和集合间的关系得到实数m的范围

(2)根据对于任意的实数都有函数式子成立,说明函数的对称轴x=1,然后得到解析式,从而求解给定区间的值域。

(3)利用给定的函数,结合二次函数的图像与性质得到最值。

解:(1),因为图像开口向上,

恒成立,故图像始终与轴有两个交点,由题意,要使这两个交点横坐标

,当且仅当:,………3分,解得:  ……4分

(2)对任意都有,所以图像关于直线对称,所以

.所以上减函数. 

.故时,值域为      6分(3)令,则

(i)当时,,当

则函数上单调递减,从而函数上的最小值为

,则函数上的最小值为,且

(ii)当时,函数,若

则函数上的最小值为,且,若

则函数上单调递增,

从而函数上的最小值为.…………………………1分

综上,当时,函数的最小值为,当时,

函数的最小值为

时,函数的最小值为.      13分GH

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网