题目内容
16.已知等比数列数列{an}的前n项和为Sn,公比q>0,S2=2a2-2,S3=a4-2.(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令${c_n}=\left\{\begin{array}{l}\frac{{{{log}_2}{a_n}}}{{{n^2}(n+2)}},n为奇数\\ \frac{n}{a_n},n为偶数\end{array}\right.$,Tn为数列{cn}的前n项和,求T2n.
分析 (I)利用等比数列的通项公式即可得出.
(II)由(I)可得:cn=$\left\{\begin{array}{l}{\frac{1}{n(n+2)},n为奇数}\\{\frac{n}{{2}^{n}},n为偶数}\end{array}\right.$.可得T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n),对奇数项与偶数项分别利用“裂项求和”、“错位相减法”即可得出.
解答 解:(I)∵S2=2a2-2,S3=a4-2.
∴S3-S2=a4-2a2=a3,
∴${a}_{2}{q}^{2}-2{a}_{2}={a}_{2}q$,a2≠0,化为q2-q-2=0,q>0,解得q=2,
又a1+a2=2a2-2,
∴a2-a1-2=0,∴2a1-a1-2=0,解得a1=2,
∴${a}_{n}={2}^{n}$.
(II)由(I)可得:cn=$\left\{\begin{array}{l}{\frac{1}{n(n+2)},n为奇数}\\{\frac{n}{{2}^{n}},n为偶数}\end{array}\right.$.
∴T2n=(c1+c3+…+c2n-1)+(c2+c4+…+c2n),
记M=(c2+c4+…+c2n)
=$\frac{2}{{2}^{2}}+\frac{4}{{2}^{4}}$+…+$\frac{2n}{{2}^{2n}}$
=$\frac{1}{2}+\frac{2}{{2}^{3}}+\frac{3}{{2}^{5}}$+…+$\frac{n}{{2}^{2n-1}}$,
则$\frac{1}{4}M$=$\frac{1}{{2}^{3}}+\frac{2}{{2}^{5}}$+…+$\frac{n-1}{{2}^{2n-1}}+\frac{n}{{2}^{2n+1}}$,
∴$\frac{3}{4}M$=$\frac{1}{2}+\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{2n-1}}$-$\frac{n}{{2}^{2n+1}}$=$\frac{\frac{1}{2}(1-\frac{1}{{4}^{n}})}{1-\frac{1}{4}}$-$\frac{n}{{2}^{2n+1}}$=$\frac{2}{3}-\frac{4+3n}{3×{2}^{2n+1}}$,
∴M=$\frac{8}{9}$-$\frac{16+12n}{9×{2}^{2n+1}}$.
∴T2n=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})]$+M
=$\frac{1}{2}(1-\frac{1}{2n+1})$+M
=$\frac{n}{2n+1}$+$\frac{8}{9}$-$\frac{16+12n}{9×{2}^{2n+1}}$.
点评 本题考查了“错位相减法”、等比数列的通项公式及其前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.
A. | $\frac{{\sqrt{5}}}{2}$ | B. | $\frac{{\sqrt{6}}}{2}$ | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
A. | 若m∥n,m?α,则n∥α | B. | 若m∥n,m?α,n?β,则α∥β | ||
C. | 若α⊥β,α⊥γ,则β∥γ | D. | 若m∥n,m⊥α,n⊥β,则α∥β |