题目内容

定义在R上的偶函数满足:对任意x1,x2∈[0,+∞),且x1≠x2都有
f(x1)-f(x2)
x1-x2
>0
,则(  )
A、f(3)<f(-2)<f(1)
B、f(1)<f(-2)<f(3)
C、f(-2)<f(1)<f(3)
D、f(3)<f(1)<f(-2)
分析:先根据
f(x2)-f(x1)
x2-x1
>0
判断出(x2-x1)(f(x2)-f(x1))>0,进而可推断f(x)在x1,x2∈[0,+∞)(x1≠x2)上单调递增,又由于f(x)是偶函数,可知在x1,x2∈(-∞,0](x1≠x2)单调递增.进而可判断出f(3),f(-2)和f(1)的大小.
解答:解:∵(x2-x1)(f(x2)-f(x1))>0,
f(x2)-f(x1)
x2-x1
则f(x)在x1,x2∈[0,+∞)(x1≠x2)上单调递增,
又f(x)是偶函数,故f(x)在x1,x2∈(-∞,0](x1≠x2)单调递减.
且满足n∈N*时,f(-2)=f(2),3>2>1>0,
得f(1)<f(-2)<f(3),
故选B.
点评:本题主要考查了函数奇偶性的应用和函数的单调性的应用.属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网