题目内容

6.(理)已知向量$\overrightarrow a=(m,1-n)$,$\overrightarrow b=(1,2)$,其中m>0,n>0,若$\overrightarrow a$∥$\overrightarrow b$,则$\frac{1}{m}+\frac{1}{n}$的最小值是3+2$\sqrt{2}$.

分析 利用向量共线定理可得:n+2m=1,再利用“乘1法”与基本不等式的性质即可得出.

解答 解:∵$\overrightarrow a$∥$\overrightarrow b$,
∴1-n-2m=0,
化为n+2m=1,
又m>0,n>0,
则$\frac{1}{m}+\frac{1}{n}$=(n+2m)$(\frac{1}{m}+\frac{1}{n})$=3+$\frac{n}{m}$+$\frac{2m}{n}$≥3+2$\sqrt{\frac{n}{m}•\frac{2m}{n}}$=3+2$\sqrt{2}$,当且仅当n=$\sqrt{2}$m=$\sqrt{2}$-1时取等号.
故答案为:3+2$\sqrt{2}$.

点评 本题考查了向量共线定理、“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网