题目内容
已知点P是椭圆![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224634115384497/SYS201311012246341153844015_ST/0.png)
【答案】分析:利用M是∠F1PF2平分线上的一点,且F1M⊥MP,判断OM是三角形F1F2N的中位线,把OM用PF1,PF2表示,再利用椭圆的焦半径公式,转化为用椭圆上点的横坐标表示,借助椭圆的范围即可求出OM的范围
解答:解:
如图,延长PF2,F1M,交与N点,∵PM是∠F1PF2平分线,且F1M⊥MP,
∴|PN|=|PF1|,M为F1F2中点,
连接OM,∵O为F1F2中点,M为F1F2中点
∴|OM|=
|F2N|=
||PN|-|PF2||=
||PF1|-|PF2||
∵在椭圆
中,设P点坐标为(x,y)
则|PF1|=a+ex,|PF2|=a-ex,
∴||PF1|-|PF2||=|a+ex+a-ex|=|2ex|=|x|
∵P点在椭圆
上,∴|x|∈[0,4],
又∵当|x|=4时,F1M⊥MP不成立,∴|x|∈[0,4)
∴|OM|∈[0,2)
故答案为[0,2)
点评:本题主要考查了椭圆的焦半径公式在求范围中的应用,做题时要善于发现规律,把所求问题转化为熟悉的知识.
解答:解:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224634115384497/SYS201311012246341153844015_DA/images0.png)
∴|PN|=|PF1|,M为F1F2中点,
连接OM,∵O为F1F2中点,M为F1F2中点
∴|OM|=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224634115384497/SYS201311012246341153844015_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224634115384497/SYS201311012246341153844015_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224634115384497/SYS201311012246341153844015_DA/2.png)
∵在椭圆
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224634115384497/SYS201311012246341153844015_DA/3.png)
则|PF1|=a+ex,|PF2|=a-ex,
∴||PF1|-|PF2||=|a+ex+a-ex|=|2ex|=|x|
∵P点在椭圆
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101224634115384497/SYS201311012246341153844015_DA/4.png)
又∵当|x|=4时,F1M⊥MP不成立,∴|x|∈[0,4)
∴|OM|∈[0,2)
故答案为[0,2)
点评:本题主要考查了椭圆的焦半径公式在求范围中的应用,做题时要善于发现规律,把所求问题转化为熟悉的知识.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目